

# **Basalt Yarns**

# **Technical Data Sheet**

19<sup>th</sup> August 2014

1. Nomenclature. Example:

| 1. Nomenciature.             | Example:             |     |     |      |      |    |
|------------------------------|----------------------|-----|-----|------|------|----|
| BY110.068*2*4Z100.12:        | BY                   | 110 | 068 | *2*4 | Z100 | 12 |
|                              |                      |     |     |      |      |    |
| Basalt yarn                  |                      |     |     |      |      |    |
| Filament diameter 11.0 µm    |                      |     |     |      |      |    |
| Single yarn count 68 tex (g/ | /km)                 |     |     |      |      |    |
| 8-ply cabled yarn (count 6   | 8 x 2 x 4 = 544 tex) |     |     | •    |      |    |
| 100 twists per m in Z direct | ion                  |     |     |      | _    |    |
| Number of sizing             |                      |     |     |      |      |    |

#### 2. Basalt fiber

| Fiber                                    | Basalt continuous filament |
|------------------------------------------|----------------------------|
| Specific weight (without sizing) , g/cm3 | 2.67                       |

3. Types of sizings

| Sizing | Type   | Compatibility | Sizing content, % weight | Moisture content, % weight | Processing and applications    |
|--------|--------|---------------|--------------------------|----------------------------|--------------------------------|
| Nr.12  | Silane | EP, PF        | 0,4 - 0,8                | <0,5                       | Weaving, braiding, knits, etc. |
| Nr.11  | Silane | UP, VE, EP    | 0,4 - 0,8                | <0,5                       | Weaving, braiding, knits, etc. |

# 4. Standard yarns (sizing no. 12 default)

a. Single yarns

| a. Juigic jains       |                  |                                        |
|-----------------------|------------------|----------------------------------------|
| Filament diameter, µm | Count, tex (±5%) | Twists per m (TPM) in Z or S direction |
| 10                    | 68               | 28-100                                 |
| 10                    | 90               | 28-100                                 |
| 11                    | 100              | 28-100                                 |
| 11                    | 110              | 28-100                                 |
| 13                    | 150              | 28-100                                 |

b. Ply yarns

| D. 119 y       | aiiis         |                                        |                                   |
|----------------|---------------|----------------------------------------|-----------------------------------|
|                | Twist         |                                        |                                   |
| Single yarns   | Number of ply | Twists per m (TPM) in S or Z direction | Ply yarns                         |
| 10 μm, 68 tex  | 2-ply         | 28-100                                 | 10 μm, 68*2 (136 tex) 2-ply yarn  |
| 10 μm, 90 tex  | 2-ply         | 28-100                                 | 10 μm, 90*2 (180 tex) 2-ply yarn  |
| 10 μm, 90 tex  | 3-ply         | 28-100                                 | 10 μm, 90*3 (270 tex) 3-ply yarn  |
| 11 μm, 100 tex | 2-ply         | 28-100                                 | 11 μm, 100*2 (200 tex) 2-ply yarn |
| 11 μm, 100 tex | 3-ply         | 28-100                                 | 11 μm, 100*3 (300 tex) 3-ply yarn |
| 13 μm, 150 tex | 2-ply         | 28-100                                 | 13 μm, 150*2 (300 tex) 2-ply yarn |

c. Cabled yarns

|              |               | Twist                                  |                                            |
|--------------|---------------|----------------------------------------|--------------------------------------------|
| Ply yarns    | Number of ply | Twists per m (TPM) in S or Z direction | Cabled yarns                               |
| 10 μm, 68*2  | 4-ply         | 28-100                                 | 10 μm, 68*2*4 (544 tex) 8-ply cabled yarn  |
| 11 μm, 100*2 | 3-ply         | 28-100                                 | 11 μm, 100*2*3 (600 tex) 6-ply cabled yarn |

5. Twists per meter (TPM)

| 5. Twists per meter (1114)       |                                  |
|----------------------------------|----------------------------------|
| Twists per m in Z or S direction | Tolerance for twist per meter, % |
| 28 - 50 TPM                      | ± 20 %                           |
| 51 - 100 TPM                     | ± 15 %                           |
| 101 - 150 TPM                    | ± 10 %                           |

6. Mechanical properties

| Filament diameter             | Specific tensile strength of the twisted yarn, mN/tex |
|-------------------------------|-------------------------------------------------------|
| 10 μm with tex 68 and tex 136 | > 700                                                 |
| 10 μm                         | > 650                                                 |
| 11 μm                         | > 600                                                 |
| > 11 µm                       | > 550                                                 |

### 7. Packaging information

Type of packaging: cardboard box on pallet

| 1/po or patriaging caraboara box on pariot |       |                |                         |  |  |
|--------------------------------------------|-------|----------------|-------------------------|--|--|
|                                            | Tex   | Net weight, kg | Spool amount in the box |  |  |
|                                            | 68    | 2 - 3 kg       |                         |  |  |
| Flange spool                               | 68*2  | 4 - 6 kg       | 66 or 88 pieces         |  |  |
|                                            | other | 5 - 7 ka       | ·                       |  |  |

#### 8. Properties of basalt fiber

### a) Mechanical properties

| Monofilament diameter, µm                                                               | 10    | 13    | 17    |
|-----------------------------------------------------------------------------------------|-------|-------|-------|
| Tensile test according ASTM D-3822 (dry fiber), tensile strength, mN/tex                | ≥ 700 | ≥ 650 | ≥ 600 |
| Tensile test according ASTM D-2343 (in epoxy impregnated strand), tensile strength, MPa | 3200  | 3100  | 2900  |
| Tensile test according ASTM D-2343 (in epoxy impregnated strand), tensile modulus, GPa  | 90-94 | 88-92 | 86-90 |
| Tensile test according ASTM D-2101 (Basalt monofilament), tensile strength, MPa         | 4300  | 4200  | 4000  |
| Tensile test according ASTM D-2101 (Basalt monofilament), tensile modulus, GPa          | 95    | 93    | 92    |

#### b) Tensile strength change by the heating of the basalt fiber

| Temperature             | +20°C | +200°C | +400°C |
|-------------------------|-------|--------|--------|
| Tensile strength change | 100%  | 95%    | 80%    |

### c) Thermal operating range of basalt fiber

| Thermal load duration                                                                             | Temperature range         |
|---------------------------------------------------------------------------------------------------|---------------------------|
| Permanent                                                                                         | From -260 up to +400 °C   |
| (1) Stage 1: amorphous fiber with sizing on the fiber surface                                     | Up to +200 °C             |
| (2) Stage 2: burning of sizing (10-15 minutes), amorphous fiber                                   | From +200 up to +350 °C   |
| (3) Stage 3: amorphous fiber without sizing on the fiber surface                                  | From +350 up to +400 °C   |
| Short term (few minutes)                                                                          | From +400 up to +850 °C   |
| (4) Stage 4: transition of FeO into Fe2O3 and beginning of crystallization of Fe2O3. The fiber is | From +400 up to +850 °C   |
| becoming less and less amorphous and more and more brittle                                        |                           |
| Short term (few seconds)                                                                          | From +850 up to +1250 °C  |
| (5) Stage 5: all the Fe2O3 is in crystal form, the material is extremely brittle, its mechanical  | From +850 up to +1050 °C  |
| properties are extremely poor but without stress and vibration it continues working as            |                           |
| thermo insulation pretty good                                                                     |                           |
| (6) Stage 6: sintering temperature                                                                | From +1050 up to +1250 °C |

### d) Thermal properties of basalt

| Melting range                   | 1460-1500 °C |
|---------------------------------|--------------|
| Crystallization temperature     | 1250 °C      |
| Sintering temperature           | 1050 °C      |
| Thermal conductivity, W/(m · K) | 0.031-0.038  |

#### e) Chemical stability

|                                                                          | Cem FIL | Basalt    | E-glass     |
|--------------------------------------------------------------------------|---------|-----------|-------------|
| Weightlessness in 3-hour boiling in water                                | -       | 0.2%      | ı           |
| Weightlessness in 3-hour boiling in saturated cement solution (pH 12,9)  | 0.15%   | 0.35%     | 4.5%        |
| Weightlessness in 3-hour boiling in 2N solution HCl (hydrochloric acid)  | -       | 2-7%      | 38.5%       |
| Weightlessness in 3-hour boiling in 2N solution NaOH (sodium hydroxide)  | -       | 6%        | -           |
| Weightlessness in 30 minutes and in 180 minutes in H2SO4 (sulfuric acid) | -       | 2% and 6% | 14% and 22% |

## **Disclaimer of Liability**

This data is offered solely as a guide in the selection of reinforcement. The information contained in this publication is based on actual laboratory data and field test experience. We believe this information to be reliable, but do not guarantee its applicability to the user's process or assume any liability arising out of its use or performance. The user, by accepting the products described herein, agrees to be responsible for thoroughly testing any application to determine its suitability before committing to production. It is important for the user to determine the properties of its own commercial compounds when using this or any other reinforcement.